Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014096

RESUMO

Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.

2.
Front Immunol ; 14: 1085883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845143

RESUMO

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Imunização Passiva/métodos , Soroterapia para COVID-19
3.
Commun Biol ; 5(1): 1380, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526890

RESUMO

Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.


Assuntos
COVID-19 , Animais , COVID-19/metabolismo , SARS-CoV-2 , Subpopulações de Linfócitos T , Inflamação/metabolismo , Primatas
4.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976993

RESUMO

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinas de Subunidades Antigênicas
5.
Nat Commun ; 13(1): 4823, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973985

RESUMO

Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Carga Viral , Viremia/tratamento farmacológico
6.
PLoS Pathog ; 18(7): e1010618, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789343

RESUMO

The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.


Assuntos
COVID-19 , Aerossóis , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Macaca mulatta , SARS-CoV-2
7.
Nat Commun ; 13(1): 1745, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365631

RESUMO

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis. Importantly, this is seen among infected animals that do not develop severe respiratory disease, which may provide insight into neurological symptoms associated with "long COVID". Sparse virus is detected in brain endothelial cells but does not associate with the severity of central nervous system (CNS) injury. We anticipate our findings will advance our current understanding of the neuropathogenesis of SARS-CoV-2 infection and demonstrate SARS-CoV-2 infected NHPs are a highly relevant animal model for investigating COVID-19 neuropathogenesis among human subjects.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , Células Endoteliais , Humanos , Primatas
8.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429402

RESUMO

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais , Macaca mulatta
9.
Am J Respir Crit Care Med ; 206(1): 94-104, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412961

RESUMO

Rationale: Different Mycobacterium tuberculosis (Mtb) strains exhibit variable degrees of virulence in humans and animal models. Differing stress response strategies used by different strains of Mtb could influence virulence. Objectives: We compared the virulence of two strains of Mtb with use in animal model research: CDC1551 and Erdman. Methods: Rhesus macaques, which develop human-like tuberculosis attributes and pathology, were infected with a high dose of either strain via aerosol, and virulence was compared by bacterial burden and pathology. Measurements and Main Results: Infection with Erdman resulted in significantly shorter times to euthanasia and higher bacterial burdens and greater systemic inflammation and lung pathology relative to those infected with CDC1551. Macaques infected with Erdman also exhibited significantly higher early inflammatory myeloid cell influx to the lung, greater macrophage and T cell activity, and higher expression of lung remodeling (extracellular matrix) genes, consistent with greater pathology. Expression of NOTCH4 (neurogenic locus notch homolog 4) signaling, which is induced in response to hypoxia and promotes undifferentiated cellular state, was also higher in Erdman-infected lungs. The granulomas generated by Erdman, and not CDC1551, infection appeared to have larger regions of necrosis, which is strongly associated with hypoxia. To better understand the mechanisms of differential hypoxia induction by these strains, we subjected both to hypoxia in vitro. Erdman induced higher concentrations of DosR regulon relative to CDC1551. The DosR regulon is the global regulator of response to hypoxia in Mtb and critical for its persistence in granulomas. Conclusions: Our results show that the response to hypoxia is a critical mediator of virulence determination in Mtb, with potential impacts on bacillary persistence, reactivation, and efficiency of therapeutics.


Assuntos
Mycobacterium tuberculosis , Animais , Granuloma , Hipóxia , Inflamação/patologia , Pulmão/patologia , Macaca mulatta , Mycobacterium tuberculosis/genética , Virulência
10.
Viral Immunol ; 35(3): 192-199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333631

RESUMO

Chikungunya (CHIKV) is an emerging worldwide viral threat. The immune response to infection can lead to protection and convalescence or result in long-term sequelae such as arthritis. Early innate immune events during acute infection have been characterized for some cell types, but more must be elucidated with respect to cellular responses of monocytes and other myeloid lineage cells. In addition to their roles in protection and inflammation resolution, monocytes and macrophages are sites for viral replication and may also act as viral reservoirs. These cells are also found in joints postinfection, possibly playing a role in long-term CHIKV-induced pathology. We examined kinetic and phenotypic changes in myeloid lineage cells, including monocytes, in cynomolgus macaques early after experimental infection with CHIKV. We found increased proliferation of monocytes and decreased proliferation of myeloid dendritic cells early during infection, with an accompanying decrease in absolute numbers of both cell types, as well as a simultaneous increase in plasmacytoid dendritic cell number. An increase in CD16 and CD14 was seen along with a decrease in monocyte Human Leukocyte Antigen-DR isotype expression within 3 days of infection, potentially indicating monocyte deactivation. A transient decrease in T cells, B cells, and natural killer cells correlated with lymphocytopenia observed during human infections with CHIKV. CD4+ T cell proliferation decreased in blood, indicating relocation of cells to effector sites. These data indicate CHIKV influences proliferation rates and kinetics of myeloid lineage cells early during infection and may prove useful in development of therapeutics and evaluation of infection-induced pathogenesis.


Assuntos
Febre de Chikungunya , Animais , Linhagem da Célula , Febre de Chikungunya/complicações , Cinética , Macaca , Monócitos
11.
J Am Assoc Lab Anim Sci ; 61(2): 173-180, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148813

RESUMO

Social housing is one of the best forms of environmental enhancement for nonhuman primates, and current research into pair compatibility and introduction techniques focuses on improving safety and outcome. The gradual steps method (GS), which is widely used for introducing indoor-housed macaques, involves an initial phase of limited physical contact to allow animals to acclimate to one another prior to full contact. A safer, more efficacious introduction method is needed. The administration of diazepam, a sedating anxiolytic medication, is known to increase affiliative behavior in familiar, socially housed rhesus macaques. We hypothesized that administration of a single dose of diazepam prior to full contact introduction without a protected contact phase would improve the success rate of isosexual introductions of unfamiliar macaques as compared with the success rate of GS. We administered 3.2 mg/kg oral diazepam to 34 adult male rhesus macaques (Macaca mulatta) 30-45 min prior to introduction into full contact. Pairs were deemed successful after 14 consecutive days of compatible full-contact housing. Behavioral data collected during these introductions was compared with data collected on 58 adult males during social introductions using GS. Sixteen of 17 introductions (94%) employing diazepam were successful. This success rate was significantly higher than the 45% success rate of introductions using GS. We also found that a longer duration of single housing and increased age were predictive of pair failure in animals introduced using GS. Our results suggest that diazepam administration prior to full contact introductions increases the success rate of male social introductions.


Assuntos
Abrigo para Animais , Comportamento Social , Agressão , Animais , Diazepam , Macaca mulatta , Masculino
12.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34983950

RESUMO

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Vacinas contra COVID-19/efeitos adversos , COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina/imunologia , Nicotiana/metabolismo , Pandemias/prevenção & controle , Polissorbatos/efeitos adversos , SARS-CoV-2/imunologia , Esqualeno/efeitos adversos , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/efeitos adversos , alfa-Tocoferol/efeitos adversos , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Combinação de Medicamentos , Composição de Medicamentos/métodos , Imunidade Humoral , Macaca mulatta , Masculino , Polissorbatos/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Esqualeno/administração & dosagem , Resultado do Tratamento , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , alfa-Tocoferol/administração & dosagem
13.
J Med Primatol ; 51(1): 45-48, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34693542

RESUMO

Tracheal disruption is a previously unreported complication of nonhuman primate social trauma. Two cases were identified in rhesus macaques with subcutaneous emphysema. These cases resolved with medical management and demonstrate that the combined use of radiography and tracheoscopy allows rapid assessment and diagnosis of tracheal trauma in nonhuman primates.


Assuntos
Traqueia , Animais , Macaca mulatta , Traqueia/diagnóstico por imagem
14.
PLoS Pathog ; 17(12): e1010162, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929014

RESUMO

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.


Assuntos
COVID-19 , Modelos Animais de Doenças , Macaca nemestrina , Doenças dos Macacos/virologia , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Imunidade Humoral , Pulmão/imunologia , Pulmão/virologia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Doenças dos Macacos/fisiopatologia , Linfócitos T/imunologia
15.
Front Cell Infect Microbiol ; 11: 753444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869063

RESUMO

SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.


Assuntos
COVID-19 , Proteínas do Envelope Viral , Animais , Anticorpos Neutralizantes , Humanos , Macaca mulatta , Glicoproteínas de Membrana , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
16.
Front Immunol ; 12: 754642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691074

RESUMO

Understanding SARS-CoV-2 immune pathology is critical for the development of effective vaccines and treatments. Here, we employed unbiased serial whole-blood transcriptome profiling by weighted gene network correlation analysis (WGCNA) at pre-specified timepoints of infection to understand SARS-CoV-2-related immune alterations in a cohort of rhesus macaques (RMs) and African green monkeys (AGMs) presenting with varying degrees of pulmonary pathology. We found that the bulk of transcriptional changes occurred at day 3 post-infection and normalized to pre-infection levels by 3 weeks. There was evidence of coordination of transcriptional networks in blood (defined by WGCNA) and the nasopharyngeal SARS-CoV-2 burden as well as the absolute monocyte count. Pathway analysis of gene modules revealed prominent regulation of type I and type II interferon stimulated genes (ISGs) in both RMs and AGMs, with the latter species exhibiting a greater breadth of ISG upregulation. Notably, pathways relating to neutrophil degranulation were enriched in blood of SARS-CoV-2 infected AGMs, but not RMs. Our results elude to hallmark similarities as well as differences in the RM and AGM acute response to SARS-CoV-2 infection, and may help guide the selection of particular NHP species in modeling aspects of COVID-19 disease outcome.


Assuntos
COVID-19/imunologia , Degranulação Celular , Neutrófilos/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/sangue , Chlorocebus aethiops , Modelos Animais de Doenças , Macaca mulatta , Neutrófilos/metabolismo , SARS-CoV-2/metabolismo , Especificidade da Espécie
17.
Nature ; 594(7862): 253-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33873199

RESUMO

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Compostos de Alúmen , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/virologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Masculino , Oligodesoxirribonucleotídeos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Esqualeno
18.
bioRxiv ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33594366

RESUMO

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

19.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408173

RESUMO

The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies.IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.


Assuntos
DNA Viral/metabolismo , Provírus/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Ativação Viral , Animais , Antirretrovirais/uso terapêutico , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/virologia , DNA Viral/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Linfonodos/virologia , Macaca mulatta , Provírus/efeitos dos fármacos , RNA Viral/sangue , RNA Viral/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/virologia
20.
Cell Rep Med ; 2(12): 100461, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028605

RESUMO

Q fever is caused by the intracellular bacterium Coxiella burnetii, for which there is no approved vaccine in the United States. A formalin-inactivated whole-cell vaccine (WCV) from virulent C. burnetii NMI provides single-dose long-lived protection, but concerns remain over vaccine reactogenicity. We therefore sought an alternate approach by purifying native C. burnetii antigens from the clonally derived avirulent NMII strain. A soluble bacterial extract, termed Sol II, elicits high-titer, high-avidity antibodies and induces a CD4 T cell response that confers protection in naive mice. In addition, Sol II protects against pulmonary C. burnetii challenge in three animal models without inducing hypersensitivity. An NMI-derived extract, Sol I, enhances protection further and outperforms the WCV gold standard. Collectively, these data represent a promising approach to design highly effective, non-reactogenic Q fever vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Hipersensibilidade/imunologia , Imunidade , Febre Q/imunologia , Febre Q/prevenção & controle , Aerossóis , Animais , Afinidade de Anticorpos , Variação Antigênica , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Imunização , Lipopolissacarídeos , Pulmão/microbiologia , Pulmão/patologia , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Febre Q/microbiologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA